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Abstract: We report on the development and validation of a compact laser instrument using 
mid-IR direct absorption spectroscopy (DAS) for high-precision measurements of ethanol in 
breath-like air mixtures. Leveraging the intermittent continuous wave (iCW) driving for 
conventional narrow-band distributed feedback (DFB) quantum cascade laser (QCL) emitting 
around 9.3 µm and using a 25 m path length multiple-pass absorption cell at reduced pressure, 
a precision of 9 ppb (amount fraction, nmol mol�1) at 60 s integration time is achieved even in 
the presence of 5% of H2O and CO2. Thus, the instrument is well suitable for metrological 
studies to investigate observed, but yet unquantified, discrepancies between different breath 
alcohol reference-generation methods. The approach can be generalized and applied for other 
organic molecules in a wide range of applications. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In many countries, alcohol breath analyzers are approved as evidential measurement devices 
to prosecute driving under the influence of alcohol [1]. Handheld analyzers used by the 
authorities must undergo type approval, conformity assessment, and annual verification. 
Currently, the metrological requirements for analyzer performance are based on the 
International Organization of Legal Metrology (OIML) specifications [2]. For calibration, 
there are two kinds of measurement standards in use [3]: i) dry ethanol-air mixtures in 
pressurized gas cylinders that are certified and made directly traceable to primary 
gravimetrically prepared standards [4], and ii) dynamic systems for ethanol-air-water vapor 
mixture generation based on Henry’s Law, where air is passed through a water-ethanol 
solution at a given temperature [5]. 

Dry standards are controversial because they lack water vapor, which is a critical 
parameter in breath-alcohol measurements. Therefore, dynamic calibration standards, 
produced by the saturation method in so-called wet bath simulators, are usually preferred. 
Calibration gases produced in this way depend only on the temperature and the alcohol 
concentration of the liquid phase. The gas phase concentration is generally calculated using 
the Dubowski equation [5]. Critical points in the use of the wet bath simulator are the liquid 
temperature stability, the lack of traceability evidence on the outlet gas, and the uncertainty of 
the Henry coefficients used for the formulation of the Dubowski equation [6–9]. In fact, 
traceability and accuracy are ensured only by assuming a conventional value, fixed in OIML 
R 126 Recommendation for these coefficients [2]. Whilst this approach is generally accepted, 
it is metrologically highly unsatisfactory. 

Recently, alternative methods were proposed based on diffusion and injection for 
generating a test gas for breath alcohol measurements to possibly replace the saturation 
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method using the wet bath simulator [7,10]. Their advantages over the saturation method are 
the faster response time and better operation stability. Following the injection principle, a 
traceable generator for wet breath-alcohol was built at METAS (Switzerland) [11]. 
Preliminary results indicate a disagreement between the saturation and dynamic-gravimetric 
methods of up to 2% based on measurements using a flame-ionization-detector (FID) as 
comparator. From the point of view of road safety or medical care, a 2% disagreement in 
reference systems for the measurement of breath alcohol may appear as a minor issue. 
However, if we consider legal metrology requirements for evidential breath analyzers, i.e. the 
maximum permissible error of 5%, as defined by the OIML Recommendation, a 2% relative 
disagreement is highly significant during type approval and initial verification. It is very 
laborious and costly for instrument manufacturers to adapt for non-concordant reference 
systems in different countries. Furthermore, for individuals, a 2% difference in measurement 
results may have crucial impacts in the context of fines or driving license withdrawals with 
severe consequences especially for professional drivers. Therefore, it is vital to further 
constrain the observed disagreement. Currently, none of the commercially available 
measurement systems has the required precision and selectivity for such metrological 
investigations. Thus, breath alcohol analysis, the worldwide most frequent forensic test, lacks 
convincing means in terms of SI traceability; a situation that one should consider urgent. 

To address this issue, we propose laser absorption spectroscopy (LAS) as a long 
established, sensitive, selective, and transparent approach [12], which has also been 
successfully applied as absolute method in metrology [13]. With the development of mid-IR 
semiconductor laser sources, such as quantum cascade lasers (QCL) or interband cascade 
lasers (ICL), it became possible to take full advantage of the strongest, fundamental 
absorption features of most molecules in compact and field-deployable setups [14]. Further 
benefits of LAS are the inherent high temporal resolution (< 1 s), and the possibility of in situ 
and real time measurements without the need for sample treatment or preparation procedures. 
Compared to non-dispersive infrared (NDIR) technology, which is used in commercial 
ethanol analyzers, there are several advantages of using laser sources. The coherent radiation 
of a laser source allows for extended optical path lengths up to 104 meters, realized by 
employing either multipass cell or optical cavity, which increases the absorption signal and 
thus the sensitivity, according to Lambert-Beer’s law. Additionally, the signal-to-noise ratio 
(SNR) is improved compared to conventional IR light sources, due to the much brighter IR 
radiation of the laser sources. Furthermore, the narrow bandwidth laser emission can be 
rapidly scanned through individual ro-vibrational lines at rates of kHz, leading to highly 
selective and sensitive measurements of the absorbing species, especially at reduced sample 
pressure [15]. 

While mid-IR LAS has been very successful in many applications targeting small 
inorganic compounds, its application becomes more challenging for larger molecules, which 
exhibit broader and congested absorption features requiring wide spectral coverage. 
Although, this paradigm generally applies, we demonstrate that the narrow spectral coverage 
of a distributed feedback (DFB)-QCL may deliver enough spectral information to measure 
gas mixtures containing organic molecules. To be applicable, it is however necessary that 
there is sufficient fine-structure in the absorption feature of the target compound, and that the 
maximum tuning range of the DFB-QCL is fully exploited, e.g. by intermittent continuous 
wave (iCW) operation to extend its spectral coverage, as recently proposed by Fischer et al 
[16]. A similar approach was used earlier by Kosterev et al [17], but only for pure ethanol and 
reaching a detection limit of 125 ppb, which is more than one order of magnitude higher than 
required for our target application. 

The objective of this work was to develop and validate a metrological breath-alcohol laser 
spectrometer based on the direct absorption technique for metrological applications. We show 
that ethanol represents an excellent target compound to be examined by iCW-driven QCL 
absorption spectroscopy (iCW-QCLAS). The high analytical precision of the instrument 
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